Satellite coverage analysis

ANSYS, Inc.

This tutorial demonstrates how to calculate satellite coverage around a location, including
access constraints, using Python and PySTK. It is inspired by this training.

Problem statement

The satellite graveyard is a location in the Pacific Ocean around a position known as Point
Nemo, located at a latitude of —48.87° degrees and a longitude of —123.39° degrees. At 2688
km away from any coastline, Point Nemo is a good location for disposing of inactive satellites.
The satellite graveyard is modeled as an elliptical region around Point Nemo, with a semi-
major axis of 2688 km, a semi-minor axis of 2688 km, and a bearing of 45°. A satellite flies
over the globe with an on-board sensor with the aim of surveilling the satellite graveyard. The
satellite has a J2Pertubation propagator, with an orbit with a semi-major axis of 6852.45 km,
an eccentricity of 0, an inclination of 98°, an argument of perigee of 0°, a RAAN of 150.34°,
and a true anomaly of 0°. The sensor is a simple conic sensor with a 45° half angle and an
angular resolution of 1°.

Determine how well the satellite covers this region. Additionally, determine how well the
satellite covers the region if it collects ground imagery, requiring illumination of the surface of
the Earth.

Launch a new STK instance

Start by launching a new STK instance. In this example, STKEngine is used.

from ansys.stk.core.stkengine import STKEngine

stk = STKEngine.start_application(no_graphics=False)
print(f"Using {stk.version}")

Using STK Engine v12.10.0

https://help.agi.com/stk/Content/training/CoverageToolWizard.htm

Create a new scenario

Create a new scenario in STK by running:

root = stk.new_object_root()
root.new_scenario("SatGraveyardCoverage")

Once the scenario is created, it is possible to show a 3D graphics window by running:

from ansys.stk.core.stkengine.experimental. jupyterwidgets import GlobeWidget

globe_plotter = GlobeWidget (root, 640, 480)
globe_plotter.show()

RFBOutputContext ()

Time Step:

Set the scenario time period

Using the newly created scenario, set the start and stop times. Rewind the scenario so that
the graphics match the start and stop times of the scenario:

scenario = root.current_scenario
scenario.set_time_period("20 Jun 2023 16:00:00.000", "21 Jun 2023 16:00:00.000")
root.rewind ()

Add a satellite

The satellite orbits with a repeating ground trace orbit and a J2Pertubation propagator.

First, insert the satellite:

from ansys.stk.core.stkobjects import STKObjectType

satellite = scenario.children.new(STKObjectType.SATELLITE, "EarthObsSat")
Set the propagator to J2Pertubation:

from ansys.stk.core.stkobjects import PropagatorType

satellite.set_propagator_type(PropagatorType.J2_PERTURBATION)
propagator = satellite.propagator

The satellite has an orbit with a semi-major axis of 6852.45 km, an eccentricity of 0, an
inclination of 98°, an argument of perigee of 0°, a RAAN of 150.34°, and a true anomaly of
0°.

First, set the orbit’s coordinate type to classical:

from ansys.stk.core.stkutil import OrbitStateType

orbit = propagator.initial_state.representation.convert_to(OrbitStateType.CLASSICAL)

Use the returned IOrbitStateClassical object to set the size_shape_type property. This
property designates which pair of elements describe the orbit. Set the size_shape_type to
Semi-major Axis and Eccentricity:

from ansys.stk.core.stkobjects import ClassicalSizeShape

orbit.size_shape_type = ClassicalSizeShape.SEMIMAJOR_AXIS
Set the orbit’s semi-major axis to 6852.45 km and it’s eccentricity to 0:

orbit.size_shape.semi_major_axis = 6852.45
orbit.size_shape.eccentricity = 0O

Then, use the orientation property of the I0rbitStateClassical object to set the inclina-
tion to 98° and the argument of perigee to 0°:

orbit.orientation.inclination = 98
orbit.orientation.argument_of_periapsis = 0

Using the orientation property, set the ascending node type to RAAN:

from ansys.stk.core.stkobjects import OrientationAscNode

orbit.orientation.ascending _node_type = (
OrientationAscNode .RIGHT_ASCENSION_ASCENDING_NODE
)

Set the RAAN value to 150.34°:
orbit.orientation.ascending_node.value = 150.34

Then, use the location property of the I0rbitStateClassical object to set the location
type to true anomaly:

from ansys.stk.core.stkobjects import Classicallocation

orbit.location_type = ClassicalLocation.TRUE_ANOMALY
Set the true anomaly value to 0°:
orbit.location.value = 0

Finally, assign the orbit as the satellite propagator’s initial state representation, and propagate
the satellite:

satellite.propagator.initial_state.representation.assign(orbit)
satellite.propagator.propagate()

Insert a sensor

The satellite has a fixed sensor with a simple conic pattern. This sensor looks down on
Earth, and can see any location in its field of view. This sensor is used to image the satellite
graveyard.

First, insert a sensor on the satellite. The sensor has a fixed sensor type by default.
sensor = satellite.children.new(STKObjectType.SENSOR, "SatelliteSensor")

Then, set the sensor’s type to a simple conic sensor with a 45° half angle and an angular
resolution of 1°:

from ansys.stk.core.stkobjects import SensorPattern

sensor.set_pattern_type(SensorPattern.SIMPLE_CONIC)
sensor.common_tasks.set_pattern_simple_conic(45, 1)

<ansys.stk.core.stkobjects.SensorSimpleConicPattern at 0x7£182e6896a0>

Insert a place

Insert a place object to represent Point Nemo:
point_nemo = scenario.children.new(STKObjectType.PLACE, "PointNemo")

Point Nemo is located at a latitude of —48.87° degrees and a longitude of —123.39° degrees.
Assign its location using geodetic coordinates:

point_nemo.position.assign_geodetic(-48.87, -123.39, 0)

Insert a coverage definition

Use a coverage definition to calculate satellite coverage around Point Nemo. The coverage
definition represents the satellite graveyard. This definition is used to calculate how much of
the satellite graveyard the sensor on the imaging satellite can see at any time.

First, insert the coverage definition:

sat_grave_coverage = scenario.children.new(
STKObjectType.COVERAGE_DEFINITION, "SatelliteGraveyard"
)

The coverage definition should represent the satellite graveyard, which consists of an ellipse
around Point Nemo, with a semi-major axis of 2688 km, a semi-minor axis of 2688 km, a
bearing of 45°. The definition has a latitude/longitude point granularity of 2°.

To set the coverage definition’s bounds to the elliptical area around Point Nemo, first set the
bounds type to use custom regions:

from ansys.stk.core.stkobjects import CoverageBounds

sat_grave_coverage.grid.bounds_type = CoverageBounds.CUSTOM_REGIONS
Then, assign Point Nemo as the center of the ellipse used to calculate the coverage:
ellipse = sat_grave_coverage.grid.bounds.ellipses.add(point_nemo.path)

Next, set the ellipse’s semi-major axis to 2688 km, semi-minor axis to 2688 km, and bearing
to 45°:

2688
2688

ellipse.semi_major_axis
ellipse.semi_minor_axis
ellipse.bearing = 45

Finally, configure the coverage definition’s grid point granularity. The grid point granularity
presents a trade-off between computational workload and accuracy of results. A higher gran-
ularity provides higher accuracy at the cost of a higher workload. For this example, set the
resolution to 2° latitude/longitude.

First, set the grid’s resolution to use a latitude/longitude resolution:

from ansys.stk.core.stkobjects import CoverageResolution

sat_grave_coverage.grid.resolution_type = (
CoverageResolution.RESOLUTION_LATITUDE_LONGITUDE
)

Then, set the resolution to 2°:
sat_grave_coverage.grid.resolution.latitude_longitude = 2
It is now possible to see the coverage definition in the 3D graphics widget:

globe_plotter.camera.position = [19580, 7520, -26710]
globe_plotter.show()

" Earth Inertial

20 Jun 0 Time Stepi. 10,0

Compute coverage

It is necessary to determine how much of the satellite graveyard can be seen by the satel-
lite’s sensor at different times. To do so, first assign the satellite’s sensor as an asset on the
coverage:

sat_grave_coverage.asset_list.add(sensor.path)
<ansys.stk.core.stkobjects.CoverageAssetListElement at 0x7£182e689a90>

Then, compute the accesses between the coverage area and the sensor:

sat_grave_coverage.compute_accesses()

Analyze the results with a Figure of Merit

Use a Figure of Merit to assess the quality of coverage over the coverage definition. The Figure
of Merit must register when the coverage definition’s area is covered by the satellite, so the
Figure of Merit’s definition type should be simple coverage.

First, insert a Figure of Merit:

figure_of_merit = sat_grave_coverage.children.new(
STKObjectType.FIGURE_OF_MERIT, "Coverage"
)

Then, set the Figure of Merit’s definition type to simple coverage:

from ansys.stk.core.stkobjects import FigureOfMeritDefinitionType

figure_of_merit.set_definition_type(FigureOfMeritDefinitionType.SIMPLE_COVERAGE)

Create a Satisfied by Time report

Find the overall percent satisfaction of the Figure of Merit using the Satisfied by Time report.
The last percent accumulation coverage value corresponds to the overall percent satisfaction.

Select the Figure of Merit’s Satisfied by Time report and convert it to a pandas dataframe:

satisfied_by_time_df = (
figure_of_merit.data_providers.item("Satisfied by Time")
.execute(scenario.start_time, scenario.stop_time, 60)
.data_sets.to_pandas_dataframe()

)

satisfied_by_time_df

time percent satisfied area satisfied percent accum coverage accum ar
0 20 Jun 2023 16:00:00.000000000 0.0 0.0 0.0 0.0
1 20 Jun 2023 16:01:00.000000000 0.0 0.0 0.0 0.0
2 20 Jun 2023 16:02:00.000000000 0.0 0.0 0.0 0.0
3 20 Jun 2023 16:03:00.000000000 0.0 0.0 0.0 0.0
4 20 Jun 2023 16:04:00.000000000 0.0 0.0 0.0 0.0
1436 21 Jun 2023 15:56:00.000000000 0.0 0.0 85.67693168647978 19097378
1437 21 Jun 2023 15:57:00.000000000 0.0 0.0 85.67693168647978 19097375
1438 21 Jun 2023 15:58:00.000000000 0.0 0.0 85.67693168647978 19097378

time percent satisfied area satisfied percent accum coverage accum ar

1439 21 Jun 2023 15:59:00.000000000 0.0 0.0 85.67693168647978 19097378
1440 21 Jun 2023 16:00:00.000000000 0.0 0.0 85.67693168647978 19097375

The overall satisfaction of the coverage was 85.68%.

Visualize the data with a line chart:

import matplotlib.pyplot as plt
import pandas as pd

Convert data to correct types

satisfied_by_time_df["time"] = pd.to_datetime(satisfied_by_time_df["time"])

satisfied_by_time_df.set_index("time")

satisfied_by_time_df ["percent satisfied"] = pd.to_numeric(
satisfied_by_time_df ["percent satisfied"]

)

satisfied_by_time_df ["percent accum coverage"] = pd.to_numeric(
satisfied_by_time_df ["percent accum coverage"]

)

Plot data
ax = satisfied_by_time_df.plot(
x="time", y="percent satisfied", color="dodgerblue", label="Satisfied"
)
ax = satisfied_by_time_df.plot(
x="time", y="percent accum coverage'", color="firebrick", ax=ax, label="Accumulated"

Set title and axes labels
ax.set_title("Satisfaction over Time")
ax.set_xlabel("Time")

ax.set_ylabel ("Percentage %")

Configure style
ax.set_facecolor("whitesmoke")
ax.grid(visible=True, which="both")
ax.legend(shadow=True)

plt.show()

Satisfaction over Time

—— Satisfied
80 + —— Accumulated

60

40

Percentage %

20 +

. (- A

18:00 21:00 gp:00 03:00 06:00 09:00 12:00 15:00
21-Jun

Time

The spikes in the blue line correspond to when the satellite’s sensor is directly overhead of the
region.

Visualize the results with the Figure of Merit

The Figure of Merit can be used to visualize the coverage satisfaction over time. To do so,

first configure the Figure of Merit’s graphics to show the accumulation of coverage up to the
current time:

from ansys.stk.core.stkobjects import FigureOfMeritGraphics2DAccumulation

figure_of_merit.graphics.show_graphics = True
figure_of_merit.graphics.animation_settings.accumulation = (

FigureOfMeritGraphics2DAccumulation.UP_TO_CURRENT
)

figure_of_merit.graphics.animation_settings.show_graphics = True

10

Now, animate the scenario. The satellite’s sensor colors the region along its path when the
sensor passes over the grid points.

root.rewind()

globe_plotter.camera.position = [-3550, 2520, -25360]
globe_plotter.show()

root.play_forward()

Account for lighting conditions
The satellite graveyard can only be imaged by the satellite’s sensor when it is illuminated by

daylight. To reflect this constraint, assign a lighting constraint to the Place object representing
Point Nemo:

11

from ansys.stk.core.stkobjects import AccessConstraintType

lighting_constraint = point_nemo.access_constraints.add_constraint(
AccessConstraintType.LIGHTING
)

Then, constrain the lighting to penumbra or direct sun:

from ansys.stk.core.stkobjects import ConstraintLighting

lighting_constraint.condition = ConstraintLighting.PENUMBRA_OR_DIRECT_SUN

Point Nemo now contains the constraint that must be applied to the entire grid. Set the
coverage definition’s point definition to use place objects as the reference constraint class

from ansys.stk.core.stkobjects import CoverageGridClass

sat_grave_coverage.point_definition.grid_class = CoverageGridClass.PLACE

Then, configure the point definition to use an object instance as the grid seed:

sat_grave_coverage.point_definition.use_grid_seed True

Set Point Nemo as the point definition’s seed object:

sat_grave_coverage.point_definition.seed_instance = point_nemo.path
Finally, recompute the accesses:

sat_grave_coverage.compute_accesses()

Analyze the results

Select the Figure of Merit’s Satisfied by Time report and convert it to a pandas dataframe:

satisfied_by_time_lighting df = (
figure_of_merit.data_providers.item("Satisfied by Time")
.execute(scenario.start_time, scenario.stop_time, 60)
.data_sets.to_pandas_dataframe ()

)

satisfied_by_time_lighting df

12

time percent satisfied area satisfied percent accum coverage accum ar

0 20 Jun 2023 16:00:00.000000000 0.0 0.0 0.0 0.0
1 20 Jun 2023 16:01:00.000000000 0.0 0.0 0.0 0.0
2 20 Jun 2023 16:02:00.000000000 0.0 0.0 0.0 0.0
3 20 Jun 2023 16:03:00.000000000 0.0 0.0 0.0 0.0
4 20 Jun 2023 16:04:00.000000000 0.0 0.0 0.0 0.0
1436 21 Jun 2023 15:56:00.000000000 0.0 0.0 14.753827408319674 3288625.
1437 21 Jun 2023 15:57:00.000000000 0.0 0.0 14.753827408319674 3288625.
1438 21 Jun 2023 15:58:00.000000000 0.0 0.0 14.753827408319674 3288625.
1439 21 Jun 2023 15:59:00.000000000 0.0 0.0 14.753827408319674 3288625.
1440 21 Jun 2023 16:00:00.000000000 0.0 0.0 14.753827408319674 3288625.

The percent satisfaction dropped from 85.65% to 14.75% when considering lighting condi-
tions.

13

	Problem statement
	Launch a new STK instance
	Create a new scenario
	Set the scenario time period
	Add a satellite
	Insert a sensor
	Insert a place
	Insert a coverage definition
	Compute coverage
	Analyze the results with a Figure of Merit
	Create a Satisfied by Time report
	Visualize the results with the Figure of Merit
	Account for lighting conditions
	Analyze the results

