Communication link budget calculator

ANSYS, Inc.

This tutorial demonstrates how to model a communications system including transmitters
and receivers, and calculate link budgets considering factors like terrain, rain models, and
atmospheric losses using Python and PySTK. It is inspired by this tutorial.

What are communications links, and how are they evaluated?

Communication links define the ways that a transmitter and a receiver access each other. STK
allows the modeling of two kinds of links: basic and multi-hop. A basic communications link
is access between just a single transmitter and a single receiver. A multi-hop communications
link is defined by a group of communication objects consisting of a transmitter, receiver, re-
transmitter, and another receiver. STK also allows setting constraints on communication links,
including terrain masking constraints.

Communications links in STK can be analyzed using link budget reports, which include all the
link parameters associated with the selected receiver or transmitter. Link budget reports take
light speed delay into account. They also take computed refraction into account if enabled
on the transmitter or receiver objects. Link budget reports include many communications-
specific fields, including EIRP (effective isotropic radiated power in the link direction), C/N
(Carrier-to-Noise ratio at the receiver input), Eb/No (Signal-to-Noise ratio at the receiver),
and BER (Bit Error Rate). Link budget reports can also include access-specific information,
such as the loss calculated by different selected models, including atmospheric, rain, cloud/fog,
and terrain models.

Problem statement

A team of scientists is monitoring glacial meltwater in a remote, mountainous location (latitude
47.5605°, longitude 11.5027°). They need to determine how their location impacts a link budget
between them and a low earth orbit (LEO), Earth observation satellite which is downloading
data to the team. The satellite has a simple transmitter with an isotropic antenna pattern, a
frequency of 1.7045 GHz, an EIRP of 10 dBW, a data rate of 4.2 Mb/sec, and a right-hand
circular polarization. The camp’s receiver is steerable, points at the satellite, and is placed on

https://help.agi.com/stk/Content/training/StartCommunications.htm

a half power sensor located 6 ft above the ground, with a frequency of 1.7045 GHz and 1.6 m.
The receiver has a parabolic antenna with a design frequency of 1.7 GHz, a 1.6 m diameter,
and right-hand circular polarization.

Model and analyze a link budget between the ground site and the Earth observation satellite,
taking into account different factors such as terrain, rain and atmospheric absorption, and
system noise temperature from sun, atmosphere, rain, and cosmic background.

Launch a new STK instance

Start by launching a new STK instance. In this example, STKEngine is used.

from ansys.stk.core.stkengine import STKEngine

stk = STKEngine.start_application(no_graphics=False)
print(f"Using {stk.version}")

Using STK Engine v13.0.0

Create a new scenario

Create a new scenario in STK by running:

root = stk.new_object_root()
root.new_scenario("Communications")

Once the scenario is created, it is possible to show a 3D graphics window by running:

from ansys.stk.core.stkengine.experimental. jupyterwidgets import GlobeWidget

globe = GlobeWidget (root, 640, 480)
globe.show()

RFBOutputContext ()

Set the scenario time period

Using the newly created scenario, set the start and stop times. Rewind the scenario so that
the graphics match the start and stop times of the scenario:

scenario = root.current_scenario
scenario.set_time_period("15 Mar 2024 06:00:00.000", "16 Mar 2024 06:00:00.000")
root.rewind ()

Add analytical and visual terrain

Use an STK terrain file (file extension PDTT) included with the STK install to add analytical
terrain to the scenario. The file contains information on the terrain around the scientists’
camp site. Use a Connect command to find the path to the RaistingStation.pdtt file:

import pathlib
from ansys.stk.core.stkobjects import TerrainFileType
install_dir = root.execute_command("GetDirectory / STKHome") [0]

terrain_path = str(
pathlib.Path(install_dir)

/ "Data"

/ "Resources"

/ "stktraining"

/ "imagery"

/ "RaistingStation.pdtt"

)
Then, add the file to the Earth central body’s terrain collection:

terrain = scenario.terrain.item("Earth").terrain_collection.add(
terrain_path, TerrainFileType.PDTT
)

This file is used for analysis by default after it is inserted.

Add a satellite

The Earth observation satellite is in a sun-synchronous orbit. It can thus be modelled by an
SGP4 propagator, which is used for LEO satellites. The satellite communicating with the
camp has a common name of TerraSarX, which corresponds to a space surveillance catalog
number of 31698.

To add the satellite, first insert a satellite object:

from ansys.stk.core.stkobjects import PropagatorType, STKObjectType

satellite = root.current_scenario.children.new(
STKObjectType.SATELLITE, "TerraSarX_31698"
)

Then, set the satellite’s propagator to the SGP4 propagator:

satellite.set_propagator_type(PropagatorType.SGP4)
propagator = satellite.propagator

Finally, use the propagator’s common_tasks property to add the satellite’s orbit from an online
source, and propagate the satellite:

propagator.common_tasks.add_segments_from_online_source("31698")

propagator.propagate ()

Add the camp site

Add a place object to represent the camp site:
camp_site = root.current_scenario.children.new(STKObjectType.PLACE, "CampSite")

Assign the site’s position to latitude 47.5605° and longitude 11.5027°, with an elevation of 6 ft
(0.0018288 km) to simulate the height of the equipment at the site:

camp_site.position.assign_planetodetic(47.5605, 11.5027, 0.0018288)

Model a simple transmitter

The satellite has a simple transmitter model, a model type which uses an isotropic, omnidi-
rectional antenna, which is an ideal spherical pattern antenna with constant gain. Insert the
transmitter on the satellite:

transmitter = satellite.children.new(STKObjectType.TRANSMITTER, "DownloadTransmitter")

The transmitter’s model property now contains a TransmitterModelSimple object. Set the
model’s frequency to 1.7045 GHz:

from ansys.stk.core.stkobjects import TransmitterModelSimple

transmitter_model = TransmitterModelSimple (
transmitter.model_component_linking.component

)

transmitter_model.frequency = 1.7045

Then, set the model’s EIRP, which is the effective isotropic radiated power at the output of
the transmit antenna. Set the EIRP to 10 dBW:

transmitter_model.eirp = 10
Next, set the model’s data rate to 4.2 Mb/sec:
transmitter_model.data_rate = 4.2

Then, enable polarization on the model:

transmitter_model.enable_polarization = True
Finally, set the model’s polarization type to right-hand circular:

from ansys.stk.core.stkobjects import PolarizationType

transmitter_model.set_polarization_type(PolarizationType.RIGHT_HAND_CIRCULAR)

Add a steerable sensor

The receiver antenna at the camp site is steerable. To create a steering device, add a sensor
object:

sensor = camp_site.children.new(STKObjectType.SENSOR, "ServoMotor")

Then, set the sensor’s pattern to a half power pattern, which is designed to visually model
parabolic antennas. The sensor half angle is determined by frequency and antenna diameter.

from ansys.stk.core.stkobjects import SensorPattern

sensor.set_pattern_type(SensorPattern.HALF_POWER)

The sensor’s pattern property now holds a SensorHalfPowerPattern object, through which
it is possible to configure the half power model. First, set the sensor’s frequency to 1.7045
GHz:

sensor.pattern.frequency = 1.7045

Then, set the sensor’s antenna diameter to 1.6 m:

sensor.pattern.antenna_diameter = 1.6

The sensor is steerable and tracks the satellite, so set the sensor’s pointing type to targeted:

from ansys.stk.core.stkobjects import SensorPointing

sensor.set_pointing_type(SensorPointing.TARGETED)

The sensor’s pointing property now holds a SensorPointingTargeted object, through which
it is possible to set the satellite as the sensor’s target:

sensor.pointing.targets.add("Satellite/TerraSarX_31698")

Calculate access

Get and compute the access between the camp site’s sensor and the satellite:

sensor_to_satelli
sensor_to_satelli

te_access =
te_access.compute_access()

sensor.get_access_to_object(satellite)

Then, get the access data during the entire scenario as a dataframe:

sensor_to_satelli

te_access_df = (

sensor_to_satellite_access.data_providers.item("Access Data")
.execute(scenario.start_time, scenario.stop_time)

.data_sets.to
)

sensor_to_satelli

_pandas_dataframe()

te_access_df

access number

start time

stop time

duration

Uk W N+ O
S T W N =

15 Mar 2024 06:22:09.458394650
15 Mar 2024 07:58:01.500105812
15 Mar 2024 15:31:09.921082116
15 Mar 2024 17:04:09.317277119
15 Mar 2024 18:42:20.852340085
16 Mar 2024 04:31:32.112160260

15 Mar 2024 06:33:14.874552309
15 Mar 2024 08:02:54.221900294
15 Mar 2024 15:41:19.040164169
15 Mar 2024 17:15:35.046016598
15 Mar 2024 18:47:07.001005909
16 Mar 2024 04:41:28.374312584

665.4161576585711
292.7217944814738
609.1190820532502
685.7287394791856
286.14866582359537
596.2621523233247

The sensor is able to access the satellite six times throughout the duration of the scenario.

The access between the sensor and the satellite can be seen in the 3D graphics window approx-
imately 1389 seconds after the scenario begins:

root.current_time

globe.camera.position =

globe.show()

= 1389.458394

[2703.568833967754, -5862.711497073381, 9424.82507431983]

Earth Inertial

15 Mar Timetsteps 0,0

Model the receiver

The sensor’s receiver is modelled using a complex receiver model, which allows selecting among
a variety of analytical and realistic antenna models and defining the characteristics of the
selected antenna type.

First, add the receiver on the sensor:

receiver = sensor.children.new(STKObjectType.RECEIVER, "DownloadReceiver")
Then, set the receiver’s model type to the complex receiver model:
receiver.model_component_linking.set_component ("Complex Receiver Model")

Next, use the model’s antenna_control property to set the receiver’s embedded model to a
parabolic antenna:

from ansys.stk.core.stkobjects import ReceiverModelComplex

receiver_model = ReceiverModelComplex(receiver.model_component_linking.component)
receiver_model.antenna_control.embedded_model_component_linking.set_component (
"Parabolic"

)

The receiver model’s antenna control’s embedded_model property now holds an AntennaModelParabolic
object, through which it is possible to configure the antenna model. First, configure the
antenna model to use diameter as its input type:

from ansys.stk.core.stkobjects import AntennaModelInputType, AntennaModelParabolic

antenna_control = AntennaModelParabolic(
receiver_model.antenna_control.embedded_model_component_linking.component

)
antenna_control.input_type = AntennaModelInputType.DIAMETER

Then, set the diameter to 1.6 m:
antenna_control.diameter = 1.6

Set the design frequency to 1.7 GHz:
antenna_control.design_frequency = 1.7

Next, enable the use of polarization on the receiver model:
receiver_model.enable_polarization = True

The receiver’s polarization type is the same as the transmitter’s polarization, so set the model’s
polarization type to right-hand circular:

receiver_model.set_polarization_type(PolarizationType.RIGHT_HAND_CIRCULAR)

Calculate access

Get and calculate the access between the receiver and transmitter:

receiver_basic_access = receiver.get_access_to_object(transmitter)
receiver_basic_access.compute_access()

Then, get the link information for the access for the entire scenario, using a time step of 30
s:

receiver _basic_link df = (
receiver_basic_access.data_providers.item("Link Information")
.execute(scenario.start_time, scenario.stop_time, 30)
.data_sets.to_pandas_dataframe()

)

Get the columns corresponding to time, atmospheric loss (atmos loss), rain loss, EIRP in
the link direction (eirp), received isotropic power at the receiver antenna (rcvd. iso. power),
power flux density at the receiver antenna (flux density), receiver gain over equivalent noise
temperature (g/T), carrier-to-noise density at the receiver input (c/no), bandwidth, carrier-
to-noise ratio at the receiver input (c¢/n), signal-to-noise ratio at the receiver (eb/no), bit error
rate (ber), and calculated system noise temperatures (tatmos, train, tsun, tearth, tcosmic,
tantenna, tequivalent):

link_budget_columns = [
lltimell
"atmos loss",
"rain loss",
Ileirpll ,
"rcvd. frequency",
"rcvd. iso. power",
"flux density",
Ilg/tll s
Ilc/noll R
"bandwidth",

c/n",
"eb/no",
"ber",
"tatmos",
"train",
"tsun",
"tearth",
"tcosmic",
"tantenna'",
"tequivalent",

]

receiver_basic_link_df.head(10) [1ink_budget_columns]

time atmos loss rain loss eirp rcvd. frequency rcvd. iso. power flux
0 15 Mar 2024 06:22:09.458394650 0.0 0.0 10.0 1.704539 -155.457601 -129.:
1 15 Mar 2024 07:58:01.500105812 0.0 0.0 10.0 1.704517 -155.454205 -129..
2 15 Mar 2024 15:31:09.921082116 0.0 0.0 10.0 1.704535 -155.391722 -129..

10

time atmos loss rain loss eirp rcvd. frequency rcvd. iso. power flux «

3 15 Mar 2024 17:04:09.317277119 0.0 0.0 10.0 1.704539 -155.372865 -129.:
4 15 Mar 2024 18:42:20.852340085 0.0 0.0 10.0 1.704515 -155.405099 -129..
5 16 Mar 2024 04:31:32.112160260 0.0 0.0 10.0 1.704533 -155.452536 -129..
6 15 Mar 2024 06:22:39.000000000 0.0 0.0 10.0 1.704539 -154.765272 -128.
7 15 Mar 2024 07:58:31.000000000 0.0 0.0 10.0 1.704514 -155.18293 -129.(
8 15 Mar 2024 15:31:39.000000000 0.0 0.0 10.0 1.704535 -154.772723 -128.
9 15 Mar 2024 17:04:39.000000000 0.0 0.0 10.0 1.704539 -154.657114 -128.

The dataframe now shows information corresponding to an STK link budget report. From the
data, it is possible to see that as the satellite rises over the horizon of the central body, the site
receives transmissions. When the satellite falls below the horizon, the site loses transmissions.
Additionally, because the access calculation does not include any environmental factor models
or system noise temperature considerations, the columns corresponding to the losses/noise all
have values of 0.

Add terrain to the analysis

Next, add a terrain mask to the receiver to add terrain into the access analysis. A terrain
mask causes STK to constrain access to an object by any terrain data in the line of sight to
which access is being calculated. Add a terrain mask access constraint:

from ansys.stk.core.stkobjects import AccessConstraintType

terrain_constraint = receiver.access_constraints.add_constraint(
AccessConstraintType.TERRAIN_MASK
)

Recalculate the access between the receiver and transmitter, then get the data corresponding
to a link budget report:

receiver_basic_access.compute_access()

receiver terrain_link df = (
receiver_basic_access.data_providers.item("Link Information")
.execute(scenario.start_time, scenario.stop_time, 30)
.data_sets.to_pandas_dataframe()

)

receiver_terrain_link_df.head(10) [link_budget_columns]

11

time atmos loss rain loss eirp rcvd. frequency rcvd. iso. power flux «
0 15 Mar 2024 06:23:47.759570010 0.0 0.0 10.0 1.704537 -152.945069 -126..
1 15 Mar 2024 15:33:36.548124287 0.0 0.0 10.0 1.704527 -152.052659 -125.
2 15 Mar 2024 17:07:34.413895835 0.0 0.0 10.0 1.704534 -148.927067 -122.
3 16 Mar 2024 04:32:28.173285490 0.0 0.0 10.0 1.704531 -154.328235 -128.:
4 15 Mar 2024 06:24:17.000000000 0.0 0.0 10.0 1.704536 -152.071471 -125.
5 15 Mar 2024 15:34:06.000000000 0.0 0.0 10.0 1.704524 -151.374141 -125.:
6 15 Mar 2024 17:08:04.000000000 0.0 0.0 10.0 1.70453 -147.664614 -121..
7 16 Mar 2024 04:32:58.000000000 0.0 0.0 10.0 1.704529 -153.707919 -127.4
8 15 Mar 2024 06:24:47.000000000 0.0 0.0 10.0 1.704534 -151.110464 -125.1
9 15 Mar 2024 15:34:36.000000000 0.0 0.0 10.0 1.70452 -150.737395 -124.1
Next, get the access data for the updated access:
receiver_basic_access.data_providers.item("Access Data").execute(

scenario.start_time, scenario.stop_time

) .data_sets.to_pandas_dataframe()

access number start time stop time duration

1

w N = O

2
3
4

15 Mar 2024 06:23:47.759570010
15 Mar 2024 15:33:36.548124287
15 Mar 2024 17:07:34.413895835
16 Mar 2024 04:32:28.173285490

15 Mar 2024 06:30:05.292544675
15 Mar 2024 15:39:49.757492637
15 Mar 2024 17:13:56.389724097
16 Mar 2024 04:38:33.018850881

377.53297466502795
373.2093683504718

381.97582826247526
364.84556539097684

Before adding a terrain mask, there were 6 accesses between the receiver and transmitter. By
adding a terrain mask, the accesses blocked by terrain have been removed from the report,
and there are now only 4 accesses between the receiver and transmitter.

Model environmental factors

Environmental factors can affect the performance of a communications link. In STK, it is pos-
sible to enable or disable the use of different environmental factors at three levels: scenario,
platform (facilities, places, targets, and all vehicles except satellites), and subobject (trans-
mitter, receiver, radar, and antenna). In this case, since the scenario only includes a single
receiver/transmitter pair, set the environmental factors at the scenario level.

First, add a rain model, which is used to estimate the amount of degradation (or fading) of
signal when passing through rain. The degradation is primarily due to absorption by water
molecules and is a function of frequency and elevation angle. Generally speaking, the rain loss
increases with increasing frequency. The loss also increases with decreasing ground elevation

12

angle due to a greater path distance through the portion of the atmosphere where rain occurs.
Rain also causes an increase in the antenna noise temperature. Set the enable_rain_loss
property to True on the scenario’s RF environment’s propagation channel:

scenario.rf_environment.propagation_channel.enable_rain_loss = True
Then, enable the use of the atmospheric absorption model:
scenario.rf_environment.propagation_channel.enable_atmospheric_absorption = True

It is possible to configure which specific model is used for the different environmental factors.
However, in this case, the default models are sufficient.

Next, recalculate the access between the receiver and transmitter:

receiver_basic_access.compute_access()

receiver_environmental link df = (
receiver_basic_access.data_providers.item("Link Information")
.execute(scenario.start_time, scenario.stop_time, 30)
.data_sets.to_pandas_dataframe ()

)

receiver_environmental_link_df.head(10) [1ink_budget_columns]

time atmos loss rain loss eirp rcvd. frequency rcvd. iso. power flux
0 15 Mar 2024 06:23:47.759570010 0.23797 0.005026 10.0 1.704537 -153.188065 -127.
1 15 Mar 2024 15:33:36.548124287 0.174104 0.003672 10.0 1.704527 -152.230434 -126.
2 15 Mar 2024 17:07:34.413895835 0.085919 0.00175 10.0 1.704534 -149.014736 -122.
3 16 Mar 2024 04:32:28.173285490 0.479177 0.012249 10.0 1.704531 -154.81966 -128.
4 15 Mar 2024 06:24:17.000000000 0.17687 0.003635 10.0 1.704536 -152.251976 -126.
5 15 Mar 2024 15:34:06.000000000 0.144554 0.002995 10.0 1.704524 -151.52169 -125.
6 15 Mar 2024 17:08:04.000000000 0.069449 0.001407 10.0 1.70453 -147.735471 -121.
7 16 Mar 2024 04:32:58.000000000 0.332202 0.007488 10.0 1.704529 -154.047609 -127.
8 15 Mar 2024 06:24:47.000000000 0.136309 0.00276 10.0 1.704534 -151.249533 -125.
9 15 Mar 2024 15:34:36.000000000 0.124049 0.00254 10.0 1.70452 -150.863984 -124.

After adding environmental factor models, the atmospheric and rain losses are now greater
than 0. However, the losses are minimal, so the losses in C/N and Eb/No are also minimal.

13

Model system noise temperature

The receiver’s system noise temperature enables specifying the system’s inherent noise char-
acteristics, which can help simulate real-world RF situations more accurately. STK can use
either a constant system noise temperature value, or can calculate it based off of different noise
sources. In this case, configure the receiver model’s system noise temperature to use calculated
values:

from ansys.stk.core.stkobjects import NoiseTemperatureComputeType

receiver_model.system_noise_temperature.compute_type = (
NoiseTemperatureComputeType.CALCULATE
)

Do the same for the model’s antenna noise temperature:

receiver_model.system_noise_temperature.antenna_noise_temperature.compute_type = (
NoiseTemperatureComputeType.CALCULATE
)

Then, enable the use of sun, atmosphere, rain, and cosmic background in computations

receiver_model.system_noise_temperature.antenna_noise_temperature.use_sun = True
receiver_model.system_noise_temperature.antenna_noise_temperature.use_atmosphere = True
receiver_model.system_noise_temperature.antenna_noise_temperature.use_rain = True

receiver_model.system_noise_temperature.antenna_noise_temperature.use_cosmic_background = Tr
Finally, recompute the access and get the updated link information:
receiver_basic_access.compute_access()
receiver noise_link df = (

receiver_basic_access.data_providers.item("Link Information")

.execute(scenario.start_time, scenario.stop_time, 30)

.data_sets.to_pandas_dataframe()
)
receiver_noise_link_df.head(10) [1ink_budget_columns]

time atmos loss rain loss eirp rcvd. frequency rcvd. iso. power flux

0 15 Mar 2024 06:23:47.759570010 0.23797 0.005026 10.0 1.704537 -153.188065 -127.
1 15 Mar 2024 15:33:36.548124287 0.174104 0.003672 10.0 1.704527 -152.230434 -126.
2 15 Mar 2024 17:07:34.413895835 0.085919 0.00175 10.0 1.704534 -149.014736 -122.
3 16 Mar 2024 04:32:28.173285490 0.479177 0.012249 10.0 1.704531 -154.81966 -128.
4 15 Mar 2024 06:24:17.000000000 0.17687 0.003635 10.0 1.704536 -152.251976 -126.

14

time atmos loss rain loss eirp rcvd. frequency rcvd. iso. power flux
5 15 Mar 2024 15:34:06.000000000 0.144554 0.002995 10.0 1.704524 -151.52169 -125.
6 15 Mar 2024 17:08:04.000000000 0.069449 0.001407 10.0 1.70453 -147.735471 -121.
7 16 Mar 2024 04:32:58.000000000 0.332202 0.007488 10.0 1.704529 -154.047609 -127.
8 15 Mar 2024 06:24:47.000000000 0.136309 0.00276 10.0 1.704534 -151.249533 -125.
9 15 Mar 2024 15:34:36.000000000 0.124049 0.00254 10.0 1.70452 -150.863984 -124.

There are now non-zero values in the tatmos, train, tsun, tcosmic, tantenna, and tequivalent
columns. Calculating system noise temperature improved the report and extended the time
available for downloading data.

Plot the different link budgets

Visualize the calculated link budgets under the different modeling factors:

import matplotlib.dates as md
import matplotlib.pyplot as plt
import pandas as pd

Create plot
fig, ax = plt.subplots()

Format data

receiver_environmental link df["time"] = pd.to_datetime(
receiver_environmental link df["time"]

)

receiver_environmental_link_df.sort_values(by="time", inplace=True)

receiver_terrain_link df["time"] = pd.to_datetime(receiver_terrain_link_df["time"])

receiver_terrain_link_df.sort_values(by="time", inplace=True)

receiver_noise_link_df["time"] = pd.to_datetime(receiver_noise_link_df["time"])

receiver_noise_link_df.sort_values(by="time", inplace=True)

Plot dataframes
receiver_environmental_ link_df.plot(
x="time", y="c/no", ax=ax, label="terrain, environmental", color="darkblue"
)
receiver_terrain_link_df.plot(
x="time", y="c/no", ax=ax, label="terrain", color="deeppink"
)

receiver_noise_link_df.plot(

15

x="time",

y="c/no",

ax=ax,

label="terrain, environmental, system noise",
color="palegreen",

Configure plot style
ax.set_facecolor("whitesmoke")
ax.grid(visible=True, which="both")

Set title and labels

ax.set_title("Carrier to Noise Ratio Over Time Under Different Models")
ax.set_xlabel("Time")

ax.set_ylabel("C/N (dB)")

Improve z-azis formatting
formatter = md.DateFormatter("/H:%M:%S")

ax.xaxis.set_major_formatter(formatter)

Set figure size
fig.set_size_inches(15, 8)

Show figure
plt.show()

16

Carrier to Noise Ratio Over Time Under Different Models

32 4 — terrain, environmental
— terrain

terrain, environmental, system noise
301

28

267

24

C/N (dB)

22 4

201

18 4

16 4

Q Q 0] o o
0 o° o o° o° ©F
| S (Y o

o
Q0
P @°

Time

The model accounting for only terrain has similar C/N values to the model accounting for
terrain and environmental factors, as the losses from environmental factors were minimal in
this analysis. The model accounting for terrain, environmental factors, and system noise
consistently had the highest C/N values, as calculating system noise temperature improved
the link budget.

17

	What are communications links, and how are they evaluated?
	Problem statement
	Launch a new STK instance
	Create a new scenario
	Set the scenario time period
	Add analytical and visual terrain
	Add a satellite
	Add the camp site
	Model a simple transmitter
	Add a steerable sensor
	Calculate access
	Model the receiver
	Calculate access
	Add terrain to the analysis
	Model environmental factors
	Model system noise temperature
	Plot the different link budgets

