
Satellite coverage area calculator
ANSYS, Inc.

This tutorial demonstrates how to calculate satellite coverage using Python and PySTK. It is
inspired by this training.

What is satellite coverage?

Engineers and operators often need to determine the times that a satellite can “access” (or
see) another object. Satellite coverage describes which areas of the Earth can access a satellite
considering constraints defining what constitutes a valid access, including elevation angle, sun
light or umbra restrictions, gimbal speed, range, and more. Satellite coverage can be calculated
globally, or over a certain region.

Problem statement

Two satellites present circular orbits. The first satellite has an inclination of 97.3∘ and an
altitude of 400 km. The second satellite has a RAAN of 340∘. Calculate the coverage these
satellites provide over the tropics region of the Earth, defined as the area between the latitudes
of −23.5∘ and 23.5∘. Use a point resolution of 3.0∘. Determine which satellite achieves higher
coverage of the tropics region and if coverage is better or worse near the Equator. Finally,
determine which areas of the tropics region receive coverage from both satellites at the same
time.

Launch a new STK instance

Start by launching a new STK instance. In this example, STKEngine is used.

from ansys.stk.core.stkengine import STKEngine

stk = STKEngine.start_application(no_graphics=False)
print(f"Using {stk.version}")

1

https://help.agi.com/stk/Content/training/GetStart_7_Coverage.htm

Using STK Engine v13.0.0

Create a new scenario

Create a new scenario in STK by running:

root = stk.new_object_root()
root.new_scenario("Coverage")

Once the scenario is created, it is possible to show a 3D graphics window by running:

from ansys.stk.core.stkengine.experimental.jupyterwidgets import GlobeWidget

globe_plotter = GlobeWidget(root, 640, 480)
globe_plotter.show()

RFBOutputContext()

2

A 2D graphics window can be created to better visualize the satellite coverage area:

from ansys.stk.core.stkengine.experimental.jupyterwidgets import MapWidget

map_plotter = MapWidget(root, 640, 480)
map_plotter.show()

RFBOutputContext()

3

Set the scenario time period

Using the newly created scenario, set the start and stop times. Rewind the scenario so that
the graphics match the start and stop times of the scenario:

scenario = root.current_scenario
scenario.set_time_period("1 Jul 2016", "2 Jul 2016")
root.rewind()

Add the satellites to the scenario

First, add a satellite in a polar orbit:

from ansys.stk.core.stkobjects import STKObjectType

4

polar_sat = root.current_scenario.children.new(STKObjectType.SATELLITE, "PolarSat")

Then, set the satellite’s propagator to J4Pertubation:

from ansys.stk.core.stkobjects import PropagatorType

polar_sat.set_propagator_type(PropagatorType.J4_PERTURBATION)

The satellite should have a circular orbit with an inclination of 97.3∘ and an altitude of 400
km, which translates to an initial state of 𝑟𝑥 = −6374.80 km, 𝑟𝑦 = −2303.27 km, 𝑟𝑧 =
−0.0000357827 km, 𝑣𝑥 = −0.499065 km/s, 𝑣𝑦 = 1.38127 km/s, and 𝑣𝑧 = 7.6064 km/s given
with respect to J2000 frame:

from ansys.stk.core.stkobjects import CoordinateSystem

polar_sat_propagator = polar_sat.propagator
r_vec = [-6374.8, -2303.27, -0.0000357827]
v_vec = [-0.499065, 1.38127, 7.6064]
polar_sat_propagator.initial_state.representation.assign_cartesian(

CoordinateSystem.J2000, *r_vec, *v_vec
)

Then, insert a satellite named Shuttle:

shuttle = root.current_scenario.children.new(STKObjectType.SATELLITE, "Shuttle")

Set the satellite’s propagator to J4Pertubation:

shuttle.set_propagator_type(PropagatorType.J4_PERTURBATION)

The satellite should have a circular orbit with a RAAN of 340∘, which translates to an initial
state of 𝑟𝑥 = −6878.12 km, 𝑟𝑦 = −16.3051 km, 𝑟𝑧 = 0.00199559 km, 𝑣𝑥 = −0.0115701 km/s,
𝑣𝑦 = −4.88136 km/s, and 𝑣𝑧 = 5.38292 km/s with respect to the J2000 frame:

shuttle_propagator = shuttle.propagator
r_vec = [-6878.12, -16.3051, 0.00199559]
v_vec = [-0.0115701, -4.88136, 5.38292]
shuttle_propagator.initial_state.representation.assign_cartesian(

CoordinateSystem.J2000, *r_vec, *v_vec
)

Finally, propagate both satellites:

5

polar_sat_propagator.propagate()
shuttle_propagator.propagate()

View their paths in 2D or 3D using the graphics widgets:

map_plotter.show()

globe_plotter.show()

6

Create a coverage definition

Create a coverage definition object modeling the region of Tropics:

tropics = root.current_scenario.children.new(
STKObjectType.COVERAGE_DEFINITION, "Tropics"

)

Assign the coverage definition a grid of type latitude bounds, with a minimum latitude of
−23.5∘, a maximum latitude of 23.5∘, and point granularity of 3.0∘ lat/lon:

from ansys.stk.core.stkobjects import CoverageBounds

tropics.grid.bounds_type = CoverageBounds.LATITUDE
tropics.grid.bounds.minimum_latitude = -23.5

7

tropics.grid.bounds.maximum_latitude = 23.5
tropics.grid.resolution.latitude_longitude = 3

Assign the assets

Assign the satellites (PolarSat and Shuttle) as assets on the coverage definition. To do so, use
a path to the satellites of the form ItemType/ItemName.

tropics.asset_list.add("Satellite/PolarSat")
tropics.asset_list.add("Satellite/Shuttle")

<ansys.stk.core.stkobjects.CoverageAssetListElement at 0x7f06ae7e5f90>

Configure the 2D graphics

Use the coverage definition’s static property (which holds a ICoverageGraphics2DStatic
object), to set the Show Regions, Show Region Labels, Show Points, and Points - Fill graphics
properties.

tropics.graphics.static.show_region = True
tropics.graphics.static.show_labels = True
tropics.graphics.static.show_points = True
tropics.graphics.static.fill_points = True

To set the visibility for Progress of Computations, use a CoverageGraphics2DProgress object,
which is available through the ICoverageGraphics object’s progress property.

tropics.graphics.progress.show_graphics = True

To set the satisfaction visibility, use an ICoverageGraphics2DAnimation object, which is
accessible through the ICoverageGraphics object’s animation property.

tropics.graphics.animation_settings.show_satisfaction = False

View the coverage definition’s graphics using the 2D graphics window:

map_plotter.show()

8

Compute coverage and create reports

Use the tropics coverage definition object to compute accesses:

tropics.compute_accesses()

Create reports

To create reports, access the data providers associated with the coverage object. Then,
select the type of report using the item method and the name of the report. The Cov-
erage By Asset and Coverage by Latitude reports correspond to IDataProviderFixed ob-
jects. By using the exec method, compute the data needed for these reports. The exec
method returns an IDataProviderResult object, through which it is possible to access an
IDataProviderResultDataSetCollection through the data_sets property. This object cor-
responds to the desired data.

9

access_by_asset = tropics.data_providers.item("Coverage By Asset")
access_by_latitude = tropics.data_providers.item("Coverage by Latitude")
asset_data_provider_results = access_by_asset.execute()
latitude_data_provider_results = access_by_latitude.execute()

Which satellite achieved a higher average coverage of the tropics region?

Converting to a pandas dataframe makes the answer clear:

asset_data_provider_results.data_sets.to_pandas_dataframe()

asset name minimum % coverage maximum % coverage average % coverage accumulated % coverage
0 PolarSat 0.0 12.070150071988149 2.7043421916267647 100.0000000000001
1 Shuttle 0.0 9.339998891577475 1.7469002746042435 100.0000000000001

Answer: the satellite PolarSat achieved higher average coverage of the tropics region with
an average coverage percentage of 2.704572194409824.

Note: converting to a numpy array is also possible:

asset_data_provider_results.data_sets.to_numpy_array()

array([['PolarSat', '0.0', '12.070150071988149', '2.7043421916267647',
'100.0000000000001'],

['Shuttle', '0.0', '9.339998891577475', '1.7469002746042435',
'100.0000000000001']], dtype='<U32')

Was coverage better or worse near the Equator?

latitude_df = latitude_data_provider_results.data_sets.to_pandas_dataframe()

latitude_df

latitude percent time covered total time covered
0 -22.0 4.344715 3753.834063
1 -20.0 4.325162 3736.940245
2 -17.0 4.318566 3731.240633
3 -14.0 4.307219 3721.437499
4 -12.0 4.304651 3719.218307
5 -9.0 4.304706 3719.266043
6 -7.0 4.303537 3718.256360
7 -4.0 4.308320 3722.388762

10

latitude percent time covered total time covered
8 -1.0 4.317899 3730.664740
9 1.0 4.325505 3737.236685
10 4.0 4.339423 3749.261622
11 7.0 4.354871 3762.608183
12 9.0 4.376328 3781.147401
13 12.0 4.400565 3802.087977
14 14.0 4.422870 3821.359875
15 17.0 4.465233 3857.961397
16 20.0 4.505102 3892.408187
17 22.0 4.551807 3932.760967

Answer: coverage was worse near the equator.

It is also possible to visualize the data in graph form:

import matplotlib.pyplot as plt

ax = latitude_df.plot.line(x="latitude", y="percent time covered", color="hotpink")

Configure the style of the plot
ax.get_legend().remove()
ax.set_facecolor("whitesmoke")
ax.grid(visible=True, which="both")

Set title and axes labels
ax.set_title("Coverage by Latitude")
ax.set_xlabel("Latitude")
ax.set_ylabel("Percent time covered")

plt.show()

11

Assess the quality of coverage

Set the graphics

The Figure of Merit object has its own graphics which the Coverage Definition graphics in-
terferes with. Thus, turn off the Show Regions and Show Points options of the Coverage
Definition:

tropics.graphics.static.show_region = False
tropics.graphics.static.show_points = False

Create a Figure of Merit

Create a Figure of Merit:

coverage = tropics.children.new(STKObjectType.FIGURE_OF_MERIT, "Coverage")

12

Define the coverage

Set the coverage definition to N Asset Coverage:

from ansys.stk.core.stkobjects import FigureOfMeritDefinitionType

coverage.set_definition_type(FigureOfMeritDefinitionType.N_ASSET_COVERAGE)

Set the compute type to Maximum:

from ansys.stk.core.stkobjects import FigureOfMeritCompute

coverage.definition.set_compute_type(FigureOfMeritCompute.MAXIMUM)

Configure the graphics

Set some animation graphics options for the Figure of Merit object:

from ansys.stk.core.stkobjects import FigureOfMeritGraphics2DAccumulation

coverage.graphics.animation_settings.show_graphics = True
coverage.graphics.animation_settings.accumulation = (

FigureOfMeritGraphics2DAccumulation.CURRENT_TIME
)
coverage.graphics.animation_settings.fill_points = False
coverage.graphics.animation_settings.marker_style = "Star"

Configure the static graphics

Set some static graphics options:

coverage.graphics.static.show_graphics = True
coverage.graphics.static.fill_points = False
coverage.graphics.static.marker_style = "Circle"

View the figure of merit using the 3D graphics window:

globe_plotter.show()

13

Define the coverage for the Figure of Merit

Adjust the definition of the Figure of Merit’s coverage to determine which points have coverage
from both satellites at the same time:

from ansys.stk.core.stkobjects import FigureOfMeritSatisfactionType

coverage.definition.satisfaction.enable_satisfaction = True
coverage.definition.satisfaction.satisfaction_type = (

FigureOfMeritSatisfactionType.AT_LEAST
)
coverage.definition.satisfaction.satisfaction_threshold = 2

The 3D Graphics window immediately reflects the reduction in the amount of the coverage
region that satisfies the ‘at least 2’ criterion.

14

Configure the animation graphics

Set some animation graphics to see when points are covered by neither, one, or both satel-
lites:

from ansys.stk.core.stkobjects import FigureOfMeritGraphics2DColorMethod
from ansys.stk.core.utilities.colors import Color

coverage.graphics.static.show_graphics = False
coverage.graphics.animation_settings.contours.show_graphics = True
coverage.graphics.animation_settings.contours.color_method = (

FigureOfMeritGraphics2DColorMethod.EXPLICIT
)
level1 = coverage.graphics.animation_settings.contours.level_attributes.add_level(1)
level1.color = Color.from_rgb(250, 7, 214)
level2 = coverage.graphics.animation_settings.contours.level_attributes.add_level(2)
level2.color = Color.from_rgb(45, 250, 195)

Animate the scenario:

root.rewind()

globe_plotter.camera.position = [-34200, -7780, 340]
globe_plotter.show()

15

root.play_forward()

Note that points are highlighted in pink when they are covered by only one satellite, and in
blue when covered by both satellites.

Create a Satisfied by Time report

The Satisfied by Time report summarizes the percentage and true area of the grid that satisfies
the Figure Of Merit at each time step:

satisfied_by_time_result = coverage.data_providers.item("Satisfied by Time").execute(
scenario.start_time, scenario.stop_time, 60.0

)
satisfied_by_time_df = satisfied_by_time_result.data_sets.to_pandas_dataframe()
satisfied_by_time_df

16

time percent satisfied area satisfied percent accum coverage accum area coverage
0 1 Jul 2016 00:00:00.000000000 3.479722290551911 7090692.232415388 3.479722290551911 7090692.232415388
1 1 Jul 2016 00:01:00.000000000 4.382031771021817 8929344.369045507 4.572083389543204 9316615.944960214
2 1 Jul 2016 00:02:00.000000000 4.888604822780123 9961597.320094619 5.365667029969145 10933715.496329198
3 1 Jul 2016 00:03:00.000000000 5.0628541367691176 10316668.25795659 6.02279444493523 12272755.761024632
4 1 Jul 2016 00:04:00.000000000 5.233103154517493 10663587.720754664 6.679608856079816 13611158.212245163
...
1436 1 Jul 2016 23:56:00.000000000 0.0 0.0 22.25567711958941 45350790.58104603
1437 1 Jul 2016 23:57:00.000000000 0.0 0.0 22.25567711958941 45350790.58104603
1438 1 Jul 2016 23:58:00.000000000 0.0 0.0 22.25567711958941 45350790.58104603
1439 1 Jul 2016 23:59:00.000000000 0.0 0.0 22.25567711958941 45350790.58104603
1440 2 Jul 2016 00:00:00.000000000 0.0 0.0 22.25567711958941 45350790.58104603

Visualize the data with a line chart:

import pandas as pd

convert data to correct types
satisfied_by_time_df["time"] = pd.to_datetime(satisfied_by_time_df["time"])
satisfied_by_time_df.set_index("time")
satisfied_by_time_df["percent satisfied"] = pd.to_numeric(

satisfied_by_time_df["percent satisfied"]
)
satisfied_by_time_df["percent accum coverage"] = pd.to_numeric(

satisfied_by_time_df["percent accum coverage"]
)

Plot data
ax = satisfied_by_time_df.plot(

x="time", y="percent satisfied", color="dodgerblue", label="Satisfied"
)
ax = satisfied_by_time_df.plot(

x="time", y="percent accum coverage", color="firebrick", ax=ax, label="Accumulated"
)

Set title and axes labels
ax.set_title("Satisfaction over Time")
ax.set_xlabel("Time")
ax.set_ylabel("Percentage %")

Configure style

17

ax.set_facecolor("whitesmoke")
ax.grid(visible=True, which="both")
ax.legend(shadow=True)

plt.show()

18

	What is satellite coverage?
	Problem statement
	Launch a new STK instance
	Create a new scenario
	Set the scenario time period
	Add the satellites to the scenario
	Create a coverage definition
	Assign the assets
	Configure the 2D graphics

	Compute coverage and create reports
	Create reports

	Assess the quality of coverage
	Set the graphics
	Create a Figure of Merit
	Define the coverage
	Configure the graphics
	Configure the static graphics
	Define the coverage for the Figure of Merit
	Configure the animation graphics
	Create a Satisfied by Time report

