Sensors and access

ANSYS, Inc.

This tutorial demonstrates how to use different types of sensors to analyze access using Python
and PySTK. It is inspired by this training.

What are sensors?

Sensor objects model the field-of-view and other properties of sensing devices attached to other
STK objects. There are a large variety of sensor types that can be modeled in STK, including
electro-optical and infrared sensors, parabolic antennas, push broom sensors, star trackers,
and radars. Sensors can be customized in many ways, including by designating the properties
of a sensor’s field-of-view. Additionally, sensors can behave in different ways. Sensors can be
fixed to point in the same direction as their parent object’s reference frame, targeted to track
other objects, or spinning to model instruments that spin, scan, or sweep over time. STK also
allows the application of an azimuth-elevation mask to a sensor, and the consideration of this
mask during calculations. A refraction model to constrain an atmosphere-based sensor’s line
of sight and elevation angles can be modeled. It is also possible to customize the resolution
of the sensor in terms of focus and image quality. Finally, many access constraints can be
declared, including elevation, line of sight, sun, and temporal, on sensors to describe in what
ways they can see other objects.

Problem statement

An air traffic control center is located in the Western United States between New Mexico and
Wyoming. This area sees air traffic from a nearby airport, with the traffic flying between
Cheyenne, Wyoming (latitude 41.1400°, longitude —104.8202°) and Raton, New Mexico (lati-
tude 36.9034°, longitude —104.4392°). The center uses a radar system to track aircraft flying
through the airport’s control zone. The center is located at a latitude of 38.8006° and a longi-
tude of —104.6784°. The radar’s antenna is 50 ft (0.01524 km) above ground. The center has
two sensors: one fixed sensor with a field of view constrained by a range of 150 km, and one
sweeping radar. The fixed sensor has a simple conic pattern with a cone half angle of 90°. The
sweeping radar has a rectangular pattern with a 5° vertical half angle and a 35° horizontal half

./facility-to-satellite-access.py#What-is-access?
https://help.agi.com/stk/Content/training/IntroSensors.htm

angle. Determine how well these sensors are able to view an aircraft flying between Cheyenne
and Raton.

Additionally, determine if a low earth orbit (LEO) satellite can take pictures of a ground site
in Raton, and if it can take pictures of an aircraft as it flies between Cheyenne and Raton.
The satellite flies in a low-earth circular orbit, with an inclination of 60°, an altitude of 800
km, and a RAAN of 20°. The satellite has two sensors: one fixed sensor with a simple conic
pattern and a cone half angle of 45°, and one sensor that is targeted towards Raton. The
targeted sensor has a simple conic pattern with a cone half angle of 5°. Determine if either of
the satellite’s sensors can take pictures of Raton and the aircraft during the scenario period.

All sensors in the problem have angular resolutions of 1°.

Launch a new STK instance

Start by launching a new STK instance. In this example, STKEngine is used.

from ansys.stk.core.stkengine import STKEngine

stk = STKEngine.start_application(no_graphics=False)
print (f"Using {stk.version}")

Using STK Engine v13.0.0

Create a new scenario

Create an STK scenario using the STK Root object:

root = stk.new_object_root()
root.new_scenario("SensorDesign")

Once the scenario is created, show a 3D graphics window by running:

from ansys.stk.core.stkengine.experimental. jupyterwidgets import GlobeWidget

globe_plotter = GlobeWidget(root, 640, 480)
globe_plotter.show()

RFBOutputContext ()

.- Earth Inertial

Time Step: 10

It is also possible to show a 2D graphics window by running:

from ansys.stk.core.stkengine.experimental. jupyterwidgets import MapWidget

map_plotter = MapWidget(root, 640, 480)
map_plotter.show()

RFBOutputContext ()

Set the scenario time period

Using the newly created scenario, set the start and stop times. Rewind the scenario so that
the graphics match the start and stop times of the scenario:

scenario = root.current_scenario
scenario.set_time_period("1 Jul 2016 16:00:00.000", "2 Jul 2016 16:00:00.000")
root.rewind ()

Add the air traffic control center

The air traffic control center’s site is modeled with a place object. The radar site is located
at a latitude of 38.8006° and a longitude of —104.6784°. The radar’s antenna is 50 ft (0.01524
km) above the ground.

First, insert a place object to represent the airport’s radar site:

from ansys.stk.core.stkobjects import STKObjectType

radar_site = scenario.children.new(STKObjectType.PLACE, "RadarSite")

Then, set the radar site’s position using geodetic coordinates. Provide the latitude, longitude,
and altitude corresponding to the radar’s antenna:

radar_site.position.assign_geodetic(38.8006, -104.6784, 0.01524)

Add relevant locations

Two places of interest in the vicinity of the radar site are Cheyenne, Wyoming, and Raton,
New Mexico.

First, add a place object to represent Cheyenne:
cheyenne = scenario.children.new(STKObjectType.PLACE, "Cheyenne'")

Cheyenne is located at a latitude of 41.1400° and a longitude of —104.8202°. Set the place’s
location to match Cheyenne’s:

cheyenne.position.assign_geodetic(41.1400, -104.8202, 0)
Then, add a place object to represent Raton:
raton = scenario.children.new(STKObjectType.PLACE, "Raton")

Raton is located at a latitude of 36.9034° and a longitude of —104.4392°. Set the place’s
location to match Raton’s:

raton.position.assign_geodetic(36.9034, -104.4392, 0)

Add an aircraft

To determine how well the radar site can view aircraft flying between Cheyenne and Raton,
introduce a test aircraft flying between the cities to use in access calculations.

First, insert an aircraft:
aircraft = scenario.children.new(STKObjectType.AIRCRAFT, "Aircraft")

Because the aircraft’s route is defined by a set of waypoints, the aircraft’s flight is modeled
with a Great Arc propagator. Set the aircraft’s propagator to the Great Arc propagator:

from ansys.stk.core.stkobjects import PropagatorType

aircraft.set_route_type(PropagatorType.GREAT_ARC)

The aircraft flies between Cheyenne and Raton, so the propagator’s route must include way-
points for both locations.

First, add a waypoint to the aircraft’s route to represent Cheyenne:
cheyenne_waypoint = aircraft.route.waypoints.add()
Set the waypoint’s location to match Cheyenne’s:

cheyenne_waypoint.latitude = 41.1400
cheyenne_waypoint.longitude = -104.8202

Then, add a waypoint to the route representing Raton:
raton_waypoint = aircraft.route.waypoints.add()
Set the waypoint’s location to match Raton’s:

raton_waypoint.latitude = 36.9034
raton_waypoint.longitude = -104.4392

Then, propagate the aircraft’s route:
aircraft.route.propagate()

The 2D graphics window now shows the aircraft’s route, as well as both cities and the radar
site:

map_plotter.camera.position = [6110, 34540, 0.0]
map_plotter.show()

Add a satellite

An imaging satellite flies in a low-earth circular orbit, with an inclination of 60°, an altitude of
800 km, and a RAAN of 20°. Determine if this satellite can view a site of interest at Raton.

First, insert a satellite:
satellite = scenario.children.new(STKObjectType.SATELLITE, "ImageSat")
Set the satellite’s propagator to J4Pertubation:

from ansys.stk.core.stkobjects import PropagatorType

satellite.set_propagator_type(PropagatorType.J4_PERTURBATION)
propagator = satellite.propagator

Set the orbit’s coordinate type to classical:

from ansys.stk.core.stkutil import OrbitStateType

orbit = propagator.initial_state.representation.convert_to(OrbitStateType.CLASSICAL)

Use the returned IOrbitStateClassical object to set the size_shape_type property. This
property designates which pair of elements describe the orbit. Set the size_shape_type to
Semimajor Axis and Eccentricity:

from ansys.stk.core.stkobjects import ClassicalSizeShape

orbit.size_shape_type = ClassicalSizeShape.SEMIMAJOR_AXIS
Set the orbit’s semimajor axis to 7178.14 km and it’s eccentricity to O:

orbit.size_shape.semi_major_axis = 7178.14
orbit.size_shape.eccentricity = 0

Then, use the orientation property of the I0rbitStateClassical object to set the inclina-
tion to 60° and the argument of perigee to 0°:

orbit.orientation.inclination = 60
orbit.orientation.argument_of_periapsis = 0

Using the orientation property, set the ascending node type to RAAN:

from ansys.stk.core.stkobjects import OrientationAscNode

orbit.orientation.ascending_node_type = (
OrientationAscNode.RIGHT_ASCENSION_ASCENDING_NODE
)

Set the RAAN value to 20°:
orbit.orientation.ascending_node.value = 20

Then, use the location property of the I0rbitStateClassical object to set the location
type to true anomaly:

from ansys.stk.core.stkobjects import Classicallocation

orbit.location_type = ClassicalLocation.TRUE_ANOMALY

Set the true anomaly value to 0°:
orbit.location.value = 0
Finally, assign the orbit to the propagator and propagate the satellite:

satellite.propagator.initial_state.representation.assign(orbit)
satellite.propagator.propagate()

The satellite’s orbit can now be seen in the 3D graphics window:

globe_plotter.show()

Earth In
1 Jul 20

Add a fixed sensor on the satellite

The satellite has two sensors. The first sensor is a fixed sensor. A fixed sensor always points
in a fixed direction with respect to its parent object. Because this sensor is attached to the
satellite, it points with respect to the satellite’s reference frame. And because the satellite is

a moving object, even though the sensor is fixed, the sensor’s field-of-view changes along with
the satellite’s movement.

The fixed sensor has a simple conic pattern with a 45° cone angle and an angular resolution
of 1°. Determine if this sensor can see Raton during the analysis period.

First, insert a sensor on the satellite. By default, the sensor’s type is fixed.
fixed_sat_sensor = satellite.children.new(STKObjectType.SENSOR, "FixedSatelliteSensor")

Then, set the sensor’s pattern to simple conic with a cone half angle of 45° and an angular
resolution of 1°:

from ansys.stk.core.stkobjects import SensorPattern

fixed_sat_sensor.set_pattern_type(SensorPattern.SIMPLE_CONIC)
fixed_sat_sensor.common_tasks.set_pattern_simple_conic(45, 1)

<ansys.stk.core.stkobjects.SensorSimpleConicPattern at 0x7£08a5c223c0>

It is possible to see the sensor’s field of vision in the 3D graphics window:

globe_plotter.camera.position = [12770, 9060, 4570]
globe_plotter.show()

10

Earth Inertial
1 Jul 2015 1 L Time Step: 10

Compute fixed access

Determine if the fixed sensor on the satellite can take pictures of the site of interest in Raton
during the analysis period. To do so, add Raton as an associated object to the sensor. Then,
compute access.

Create an access object between the fixed sensor and Raton:
fixed_sat_access = fixed_sat_sensor.get_access_to_object(raton)
Use the access object to compute the accesses between the sensor and Raton:
fixed_sat_access.compute_access()

Then, use the access object’s data providers to get an Access Data report for the time period
between the scenario’s start and end times. Convert the report to a pandas data frame for
easier viewing:

11

fixed_sat_access.data_providers.item("Access Data'") .execute(
scenario.start_time, scenario.stop_time
) .data_sets.to_pandas_dataframe ()

access number start time stop time duration frc
0 1 1 Jul 2016 23:18:46.104908632 1 Jul 2016 23:22:28.498270442 222.39336180996543 5
1 2 2 Jul 2016 15:44:40.777543565 2 Jul 2016 15:47:17.087621348 156.31007778349158 15

There are two rows in the dataframe, each corresponding to an access. The access durations
were approximately 222 and 156 seconds.

Add a moving sensor on a the satellite

Many satellites can gimbal their sensors to track other objects (stationary and moving). STK
provides a variety of sensor definitions and pointing types that model this type of movement.
In this scenario, the satellite has a second moving sensor targeted towards Raton. Compare
the access times for Raton between the fixed and targeted sensors.

First, insert a sensor on the satellite:

moving_sat_sensor = satellite.children.new(
STKObjectType.SENSOR, "MovingSatelliteSensor"
)

The sensor is inserted as a fixed sensor by default, so set the sensor’s pointing type to tar-
geted:

from ansys.stk.core.stkobjects import SensorPointing

moving_sat_sensor.set_pointing_type(SensorPointing.TARGETED)

Then, set the sensor’s pattern to simple conic with a cone half angle of 5° and an angular
resolution of 1°:

moving_sat_sensor.set_pattern_type(SensorPattern.SIMPLE_CONIC)
moving_sat_sensor.common_tasks.set_pattern_simple_conic(5, 1)

<ansys.stk.core.stkobjects.SensorSimpleConicPattern at 0x7£08a5c160d40>

12

Because the sensor is set to a pointing type, the sensor’s pointing method now holds an
ISensorPointingTargeted object, through which it is possible to add a target to the sensor.
Add Raton as the target:

moving_sat_sensor.pointing.targets.add(raton.path)

Compute targeted access

Determine how the access times for the targeted sensor compare to those for the fixed sensor.
First, create an access between the moving sensor and Raton:

moving_sat_access = moving_sat_sensor.get_access_to_object(raton)

Use the access object to compute the accesses between the sensor and Raton:
moving_sat_access.compute_access()

Then, use the access object’s data providers to get an Access Data report for the time period
between the scenario’s start and end times and convert the report to a pandas data frame:

moving_sat_access.data_providers.item("Access Data").execute(
scenario.start_time, scenario.stop_time
) .data_sets.to_pandas_dataframe ()

access number

start time

stop time

duration

N OOt W= O

0 3 3 Tk W

1 Jul 2016 16:06:33.042496013
1 Jul 2016 17:54:25.049095887
1 Jul 2016 19:43:08.544332551
1 Jul 2016 21:28:32.969415172
1 Jul 2016 23:12:41.028629505
2 Jul 2016 00:57:36.720938550
2 Jul 2016 13:54:26.287043448
2 Jul 2016 15:38:13.753916346

1 Jul 2016 16:21:57.147793422
1 Jul 2016 18:06:09.202688175
1 Jul 2016 19:52:18.284146016
1 Jul 2016 21:41:19.324967137
1 Jul 2016 23:28:27.709277478
2 Jul 2016 01:11:41.846391845
2 Jul 2016 14:09:07.045621671
2 Jul 2016 15:53:50.036892574

924.1052974092187
704.1535922877802
549.7398134657833
766.3555519643633
946.6806479730985
845.1254532949642
880.7585782229726
936.2829762279725

The targeted sensor is able to access Raton 8 times, as opposed to the fixed sensor’s 2 accesses.
The targeted sensor’s accesses are also longer, ranging between approximately 549 and 946
seconds. The increased access is because the targeted sensor locks onto the assigned target
using the sensor’s boresight. This represents point-to-point access. Because the access is only
constrained by the line-of-site, the targeted sensor can access Raton from horizon to horizon.
The field of view of the fixed sensor has to pass over Raton to be able to access it, so the access
time for the targeted sensor is much higher.

13

Conclusion: Both cameras attached to the imaging satellite have opportunities to take pic-
tures of Raton.

Add a fixed sensor on the radar site

Now, determine if the radar site can see an aircraft flying between Cheyenne and Raton. The
site has two sensors, one of which is a fixed sensor. Sensors can be used to model instruments
attached to stationary objects, such as Facility, Place, and Target objects. Fixed sensors
attached to stationary objects also point with respect to the parent object’s reference frame.
Since stationary objects never change position or direction, a fixed sensor on a fixed object
always points in a fixed direction. The radar site has one fixed sensor representing the site’s
entire possible field of view.

First, add a sensor to the radar site. The sensor is inserted as a fixed sensor by default.
radar_dome_sensor = radar_site.children.new(STKObjectType.SENSOR, "RadarDome")

Then, set the sensor’s pattern to simple conic with a cone half angle of 90° and an angular
resolution of 1°:

radar_dome_sensor.set_pattern_type(SensorPattern.SIMPLE_CONIC)
radar_dome_sensor.common_tasks.set_pattern_simple_conic(90, 1)

<ansys.stk.core.stkobjects.SensorSimpleConicPattern at 0x7f£07c90f6ad0>

Add a constraint to the sensor

The fixed sensor attached to the facility is similar to the fixed sensor attached to the imaging
satellite. However, the site’s sensor has a larger field-of-view, and instead of pointing straight
down this sensor points straight up from the radar site. So, the sensor has an upwards looking
field-of-view that covers everything above the site. This is not a realistic field of view, so limit
the sensor’s range so that the field-of-view spans a constrained area mimicking the field-of-view
of the actual air traffic control radar. Limit the field-of-view to a maximum range of 150 km.

First, add a range access constraint to the sensor:

from ansys.stk.core.stkobjects import AccessConstraintType

dome_range_constraint = radar_dome_sensor.access_constraints.add_constraint(
AccessConstraintType.RANGE

14

Then, set the constraint to have a maximum range of 150 km:

dome_range_constraint.enable_maximum = True
dome_range_constraint.maximum = 150

The sensor can now only see 150 km in each direction.

Configure the 2D projection properties

2D graphics projection properties for sensors control the display of sensor projection graphics in
the 2D Graphics window. When the sensor’s display is set to project to the range constraint,
STK projects the sensor’s field-of-view to the maximum range previously specified for the
Sensor.

Configure the sensor’s 2D graphics properties to show a projection of the maximum range on
the 2D map:

from ansys.stk.core.stkobjects import SensorProjectionDistanceType

radar_dome_sensor.graphics.projection.distance_type = (
SensorProjectionDistanceType.RANGE_CONSTRAINT

)

radar_dome_sensor.graphics.projection.use_constraints = True

radar_dome_sensor.graphics.projection.show_on_2d_map = True

It is now possible to see the range of 150 km around the radar site on the 2D graphics window:

map_plotter.show()

15

Calculate access

From the projection on the map, it is clear that the fixed sensor can access the flight along its
route. Now, determine how long the sensor can access the flight for.

Create an access between the sensor and the aircraft:

radar_dome_access = radar_dome_sensor.get_access_to_object(aircraft)
Compute the accesses between the sensor and aircraft:
radar_dome_access.compute_access ()

View the Access Data report for the scenario’s duration as a pandas dataframe:

radar_dome_access_df = (
radar_dome_access.data_providers.item("Access Data")
.execute(scenario.start_time, scenario.stop_time)

16

.data_sets.to_pandas_dataframe()

)

radar_dome_access_df

access number start time stop time duration

fror

0 1 1 Jul 2016 16:29:43.607470276 1 Jul 2016 17:22:37.021112289 3173.413642013082

N/

The fixed sensor can view the aircraft for approximately 3173 seconds.

Generate an AER report

An AER (azimuth, elevation, and range) report describes the location of the aircraft when it
is within the sensor’s view. This data can be useful for many purposes, including air traffic
control. To get the AER report, first select the AER Data report from the access’s data
providers. Then, select the Default report from the IDataProviders object stored in the
IDataProviderGroup’s group property. Finally, convert the report to a pandas dataframe:

aer df = (
radar_dome_access.data_providers.item("AER Data")
.group.item("Default")
.execute(scenario.start_time, scenario.stop_time, 60)
.data_sets.to_pandas_dataframe ()

)
It is now possible to graph the azimuth, elevation, and range data:

import matplotlib.dates as md
import matplotlib.pyplot as plt
import pandas as pd

Convert columns to correct types
aer_df["time"] = pd.to_datetime(aer_df["time"])
aer_df.set_index("time", inplace=True)

cols = ["azimuth", "elevation", "range"]

aer_df [cols] = aer_df[cols].apply(pd.to_numeric)

Create a plot and duplicate the z—azis

fig, axl = plt.subplots(figsize=(8, 8))
ax2 = axl.twinx()

17

Plot range, azimuth, and elevation
(linel,) = ax2.plot(aer_df.index, aer_df["range"], color="hotpink", label="Range (km)")
(1ine2,) = axl.plot(
aer_df.index, aer_df["azimuth"], color="skyblue", label="Azimuth (deg)"
)
(1ine3,) = axl.plot(
aer_df.index, aer_df["elevation"], color="gold", label="Elevation (deg)"

Set title and azes labels

axl.set_title("Azimuth, Elevation, and Range over Time")
axl.set_xlabel("Time")

axl.set_ylabel("Angle (deg)")

ax2.set_ylabel("Distance (km)")

Combine legends

lines = [linel, line2, line3]

labels = [line.get_label() for line in lines]
axl.legend(lines, labels, shadow=True)

Configure style
axl.set_facecolor("whitesmoke")
axl.grid(visible=True, which="both", linestyle="--")

Improve z—azis formatting

formatter = md.DateFormatter("%H:%M")
axl.xaxis.set_major_formatter (formatter)

Set major and minor locators

xlocator_major = md.MinuteLocator(interval=10)
xlocator_minor = md.MinuteLocator (interval=5)
axl.xaxis.set_major_locator(xlocator_major)
axl.xaxis.set minor_locator(xlocator_minor)
plt.show()

18

Azimuth, Elevation, and Range over Time

Range (km)
350 - Azimuth (deg) |} 120
Elevation (deg)
300 1
100
250 A
80
© 2001 §
= ©
@ =
g’ - 60 E
150 4 &
100 40
50 4
F20
O -
T T T T T T
16:28 16:38 16:48 16:58 17:08 17:18

Time

Add a moving sensor to the control site

Often, the dome created by a fixed sensor object is used to model a field-of-view, or the overall
volume of space in which radar looks. The radar itself often sweeps or scans through that field-
of-view in a repeating cycle. The area of space represented by such a scanning or spinning
radar at any given instant is its field-of-view. To model the aircraft control site’s radar itself,
build a sweeping radar beam using a moving sensor.

First, insert a sensor on the radar site:

radar_sweep_sensor = radar_site.children.new(STKObjectType.SENSOR, "RadarSweep")

19

To model a field-of-view of a radar, use a rectangular sensor. Rectangular sensor types are
typically used for modeling the field-of-view of instruments such as push broom sensors and
star trackers. Rectangular sensors are defined according to specified vertical and horizontal
half-angles.

Set the radar’s sensor pattern to a rectangular pattern with a 5° vertical half angle and a 35°
horizontal half angle:

radar_sweep_sensor.set_pattern_type(SensorPattern.RECTANGULAR)
radar_sweep_sensor.common_tasks.set_pattern_rectangular(5, 35)

<ansys.stk.core.stkobjects.SensorRectangularPattern at 0x7£079bbf6bal>

This sensor configuration creates a wedge type field-of-view. Right now, that “wedge” is just
pointing straight up. The radar afixed to the radar site sweeps or scans in a repeating cycle.
Since the radar “scans”, the full range of the radar is not always covered. Configure the sensor’s
field-of-view to provide a visual representation of the area that the radar does cover at any
given point in time. Set the properties of the sensor to rotate and point at 35° elevation. Set
the spin axis elevation to 90° for horizontal rotation with a cone angle of 55° for a 35° elevation
from the horizon.

First, set the radar’s pointing type to spinning. This type of sensor is used to model radars,
push broom sensors, and other instruments that spin, scan, or sweep over time.

radar_sweep_sensor.set_pointing_type(SensorPointing.SPINNING)

The sensor’s pointing property now contains an ISensorPointingSpinning object. The spin
rate property of this object describes the rate at which the boresight spins about the spin axis,
measured in revolutions per minute. Set the spin rate to 12 revs/min:

radar_sweep_sensor.pointing.spin_rate = 12

The spin axis cone angle of the object designates the cone angle used in defining the spin axis,
i.e. the angle between the spin axis and the sensor boresight. Set the spin axis cone angle to
55°%:

radar_sweep_sensor.pointing.spin_axis_cone_angle = 55

20

Add a constraint to the sensor

Right now, the field-of-view extends beyond the limits of the actual radar (modeled with the
fixed sensor) because there are no constraints on the moving sensor. The airport’s primary
surveillance radar has a range of 150 km, so limit the range of the moving sensor to model
that constraint.

First, add a range constraint to the sweeping sensor:

Sweep_range_constraint = radar_sweep_sensor.access_constraints.add_constraint(
AccessConstraintType.RANGE
)

Then, configure the constraint to a maximum range of 150 km:

sweep_range_constraint.enable_maximum = True
sweep_range_constraint.maximum = 150

Configure the 2D projection properties

To view the moving sensor’s field of view on the 2D graphics window, configure some of the
sensors graphics properties:

from ansys.stk.core.utilities.colors import Color

radar_sweep_sensor.graphics.projection.distance_type = (
SensorProjectionDistanceType.RANGE_CONSTRAINT

)

radar_sweep_sensor.graphics.projection.use_constraints = True

radar_sweep_sensor.graphics.projection.show_on_2d_map = True

radar_sweep_sensor.graphics.color = Color.from_rgb(247, 57, 57)

radar_dome_sensor.graphics.color = Color.from_rgb(199, 247, 87)

The sweeping radar’s field-of-view can now be seen in red, while the fixed sensor’s field-of-view
is seen in yellow:

map_plotter.show()

21

Calculate access

Now, determine when the sweeping radar sensor can see the aircraft flying between Cheyenne
and Raton. To do so, first create an access between the sensor and the aircraft:

sweeping_access = radar_sweep_sensor.get_access_to_object(aircraft)
Then, compute the access:

sweeping_access.compute_access ()

View the Access Data report as a pandas dataframe:

sweeping_access_df = (
sweeping_access.data_providers.item("Access Data")
.execute(scenario.start_time, scenario.stop_time)
.data_sets.to_pandas_dataframe ()

22

sweeping_access_df

access number

start time

stop time

duration

=W = O

630
631
632
633
634

U i W N

631
632
633
634
635

1 Jul 2016 16:29:44.958476865
1 Jul 2016 16:29:49.957308017
1 Jul 2016 16:29:54.958698842
1 Jul 2016 16:29:59.959716426
1 Jul 2016 16:30:04.959121326

1 Jul 2016 17:22:12.544846634
1 Jul 2016 17:22:17.541926139
1 Jul 2016 17:22:22.541445097
1 Jul 2016 17:22:27.541929126
1 Jul 2016 17:22:32.541240866

1 Jul 2016 16:29:45.067448532
1 Jul 2016 16:29:50.070742561
1 Jul 2016 16:29:55.068800786
1 Jul 2016 16:30:00.070418399
1 Jul 2016 16:30:05.069711992

1 Jul 2016 17:22:12.652517225
1 Jul 2016 17:22:17.652543721
1 Jul 2016 17:22:22.652448498
1 Jul 2016 17:22:27.653618111
1 Jul 2016 17:22:32.651679447

0.10897166734980601
0.11343454465827563
0.11010194399273132
0.1107019728292471

0.11059066612301649

0.10767059116187738
0.11061758174764691
0.11100340099619643
0.11168898440610064
0.1104385818434821

The sweeping radar is able to access the aircraft 635 times during the aircraft’s flight, as
indicated by the 635 rows in the dataframe.

Now, use the dataframe to convert the duration column to numeric form and calculate the
average duration of access between the sensor and the aircraft:

import pandas as pd

sweeping_access_df ["duration"] = pd.to_numeric(sweeping_access_df["duration"])
sweeping_access_df .mean(numeric_only=True) ["duration"]

np.float64(0.111566506112864104)

The average duration of access was approximately 0.111 seconds.

Visualize access with a graph

The duration and time of access can be visualized with a graph.

import matplotlib.dates as md

Convert data to correct type

sweeping_access_df["start time"] = pd.to_datetime(sweeping_access_df["start time"])

23

Plot data
ax = sweeping_access_df.plot(
x="start time", y="duration", color="deepskyblue", linewidth=0.5

Set title and azes labels
ax.set_title("Access Duration over Time")
ax.set_xlabel("Start Time")
ax.set_ylabel("Duration (seconds)")

Configure the style of the plot
ax.get_legend() .remove ()
ax.set_facecolor("whitesmoke")
ax.grid(visible=True, which="both")

Improve z-azis formatting
formatter = md.DateFormatter("7H:%M:%S")

ax.xaxis.set_major_formatter(formatter)

plt.show()

24

Access Duration over Time

0.122 ~

0.120 ~

0.118 ~

0.116 ~

0.114

0.112 ~

Duration (seconds)

0.110 ~

118! | P ol

R

'-"J

W

}\ L | 0
‘I ﬁ “‘ M ‘I |{, lltr

Analyze multiple accesses

Create an access graph that shows all four sensors and their accesses to the aircraft. There
are already existing calculations in this scenario for the access between the radar site’s fixed
and moving sensors and the aircraft. However, there are no access calculations between either

T T T
O O
o oo
A
Start Time

wf’w

of the sensors on the satellite and the aircraft.

First, create an access between the satellite’s fixed sensor and the aircraft:

fixed_aircraft_access = fixed_sat_sensor.get_access_to_object(aircraft)

Then, compute the access:

fixed_aircraft_access.compute_access()

Convert the “Access Duration” report to a pandas dataframe:

25

fixed aircraft_access_df = (
fixed_aircraft_access.data_providers.item("Access Data")
.execute(scenario.start_time, scenario.stop_time)
.data_sets.to_pandas_dataframe()

)

Then, create an access between the satellite’s moving sensor and the aircraft:
moving_aircraft_access = moving_sat_sensor.get_access_to_object(aircraft)
Then, compute the access:

moving_aircraft_access.compute_access()

Finally, convert the “Access Duration” report to a pandas dataframe:

moving_aircraft_access_df = (
moving_aircraft_access.data_providers.item("Access Data")
.execute(scenario.start_time, scenario.stop_time)
.data_sets.to_pandas_dataframe()

)

Now, there are access duration reports for the accesses between all four sensors in the scenario
and the aircraft. Group these reports into a list:

access_reports = [
fixed_aircraft_access_df,
moving_aircraft_access_df,
sweeping_access_df,
radar_dome_access_df,

]

Convert the start and stop times for each report to a time format, and the duration columns
to a time delta format:

for report in access_reports:
report["start time"] = pd.to_datetime(report["start time"])
report["stop time"] = pd.to_datetime(report["stop time"])
report["duration"] = pd.to_numeric(report["duration"])
pd.to_timedelta(report["duration"], unit="seconds")

report["duration"]

Then, graph all the reports together in an event plot:

26

import datetime as dt

Create plot
fig, ax = plt.subplots()
ax.broken_barh (
list(
zip(
fixed_aircraft_access_df["start time"], fixed_aircraft_access_df["duration"]

),

(10, 9),
facecolors="cornflowerblue",
label="Fixed sensor on satellite",

)
ax.broken_barh(
list(
zip(
moving_aircraft_access_df["start time"],
moving_aircraft_access_df["duration"],
)
),
(20, 9,
facecolors="aquamarine",
label="Moving sensor on satellite",
)

ax.broken_barh(
list(zip(sweeping_access_df["start time"], sweeping_access_df["duration"])),
(30, 9),
facecolors="mediumslateblue",
label="Sweeping radar",
)
ax.broken_barh(
list(zip(radar_dome_access_df ["start time"], radar_dome_access_df["duration"])),
(40, 9),
facecolors="lightpink",
label="Fixed radar dome",

Set title and azes labels
ax.set_title("Access To Aircraft by Sensor")
ax.set_xlabel("Time")

ax.get_yaxis() .set_visible(False)

27

Configure the style of the plot
ax.legend ()
ax.set_facecolor("whitesmoke")

Set the stize of the plot
fig.set_size_inches(16, 5)

Improve z—axzis formatting

formatter = md.DateFormatter("/H:/M:%S")
ax.xaxis.set_major_formatter(formatter)
ax.minorticks_on()

plt.show()

Access To Aircraft by Sensor

W Fixed sensor on satellite
Moving sensor on satellite
BN Sweeping radar
Fixed radar dome

T T T T T T T T
16:10:00 16:20:00 16:30:00 16:40:00 16:50:00 17:00:00 17:10:00 17:20:00
Time

The graph shows that all of the sensors can see the aircraft during its flight, with the fixed
radar dome able to see the aircraft for the longest duration of time. However, because the
sweeping radar sees the aircraft for very short bursts of time, it is difficult to make out the
different accesses. To better see the sweeping radar’s accesses, create a plot zoomed in on the
access between 16:54 and 16:56.

Create plot
fig, ax = plt.subplots()
ax.broken_barh(
list(zip(sweeping_access_df ["start time"], sweeping_access_df["duration"])),
(30, 9),
facecolors="mediumslateblue",
label="Sweeping radar",

28

Set title and axes labels

ax.set_title("Access To Aircraft by Sweeping Radar")
ax.set_xlabel("Time")

ax.get_yaxis() .set_visible(False)

Configure the style of the plot
ax.set_facecolor("whitesmoke")

Set the size of the plot
fig.set_size_inches(16, 5)

Improve z-azis formatting
formatter = md.DateFormatter("%H:%M:%S")
ax.xaxis.set_major_formatter(formatter)
ax.minorticks_on()
ax.set_xlim(
left=dt.datetime (2016, 7, 1, 16, 54, 0), right=dt.datetime(2016, 7, 1, 16, 56, 0)

plt.show()

Access To Aircraft by Sweeping Radar

T T T T T T T
16:54:00 16:54:15 16:54:30 16:54:45 16:55:00 16:55:15 16:55:30 16:55:45 16:56:00
Time

Conclusion: All of the sensors involved in the scenario can see the aircraft during its flight.

29

	What are sensors?
	Problem statement
	Launch a new STK instance
	Create a new scenario
	Set the scenario time period
	Add the air traffic control center
	Add relevant locations
	Add an aircraft
	Add a satellite
	Add a fixed sensor on the satellite
	Compute fixed access
	Add a moving sensor on a the satellite
	Compute targeted access
	Add a fixed sensor on the radar site
	Add a constraint to the sensor
	Configure the 2D projection properties
	Calculate access
	Generate an AER report
	Add a moving sensor to the control site
	Add a constraint to the sensor
	Configure the 2D projection properties
	Calculate access
	Visualize access with a graph
	Analyze multiple accesses

